a note on hyper-zagreb index of graph operations

نویسندگان

b. basavanagoud

s. patil

چکیده

in this paper, the hyper - zagreb index of the cartesian product, composition and corona product of graphs are computed. these corrects some errors in g. h. shirdel et al.[11].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on hyper-Zagreb index of graph operations

In this paper, the Hyper - Zagreb index of the Cartesian product, composition and corona product of graphs are computed. These corrects some errors in G. H. Shirdel et al.[11].

متن کامل

The Hyper-Zagreb Index of Graph Operations

Let G be a simple connected graph. The first and second Zagreb indices have been introduced as  vV(G) (v)2 M1(G) degG and M2(G)  uvE(G)degG(u)degG(v) , respectively, where degG v(degG u) is the degree of vertex v (u) . In this paper, we define a new distance-based named HyperZagreb as e uv E(G) . (v))2 HM(G)     (degG(u)  degG In this paper, the HyperZagreb index of the Cartesian p...

متن کامل

the hyper-zagreb index of graph operations

let g be a simple connected graph. the first and second zagreb indices have been introducedas  vv(g)(v)2 m1(g) degg and m2(g)  uve(g)degg(u)degg(v) , respectively,where degg v(degg u) is the degree of vertex v (u) . in this paper, we define a newdistance-based named hyperzagreb as e uv e(g) .(v))2 hm(g)     (degg(u)  degg inthis paper, the hyperzagreb index of the cartesian product...

متن کامل

The Hyper-Zagreb Index of Four Operations on Graphs

The hyper-Zagreb index of a connected graph G, denoted by HM(G), is defined as HM(G) = ∑ uv∈E(G) [dG(u) + dG(v)] where dG(z) is the degree of a vertex z in G. In this paper, we study the hyper-Zagreb index of four operations on graphs.

متن کامل

The hyper-Wiener index of graph operations

Let G be a graph. The distance d(u,v) between the vertices u and v of the graph G is equal to the length of a shortest path that connects u and v. The Wiener index W(G) is the sum of all distances between vertices of G, whereas the hyper-Wiener index WW(G) is defined as WW(G)=12W(G)+12@?"{"u","v"}"@?"V"("G")d (u,v)^2. In this paper the hyper-Wiener indices of the Cartesian product, composition,...

متن کامل

A N‎ote on Revised Szeged ‎Index of ‎Graph ‎Operations

Let $G$ be a finite and simple graph with edge set $E(G)$‎. ‎The revised Szeged index is defined as‎ ‎$Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$‎ ‎where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and‎ ‎$n_{G}(e)$ is the number of‎ ‎equidistant vertices of $e$ in $G$‎. ‎In this paper...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of mathematical chemistry

ناشر: university of kashan

ISSN 2228-6489

دوره 7

شماره 1 2016

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023